报告题目:Rank-distance codes and determinantal varieties
报告人:段炼 (上海科技大学)
报告时间:6月19日10:30-11:30
报告地点:四川师范大学数学科学学院205
报告摘要: Using ideas from algebraic geometry, we give a short proof of asymptotic sparsity of maximum rank-distance (MRD) codes over finite fields. More generally, we show that the density of [m, n, k; \delta] codes within the relevant Grassmannian tends to 0 as q\to \infty, provided that (\delta-1)(m+n-\delta+1)\geq mn-k+2 and tends to 1 as q\to \infty, provided that (\delta-1)(m+n-\delta+1)\leq mn-k. These results were proved by Gruica and Ravagnani using a delicate combinatorial argument. Our new method also leads to an explicit formula for the missing case (\delta-1)(m+n-\delta+1)= mn-k+1, where the density tends to 1/e for large m and n. This latter result was previously established by Antrobus and Gluesing-Luerssen for the special case when n=\delta=2 and m=k.
报告人简介:段炼,上海科技大学数学科学研究所助理教授。2019年博士毕业于马萨诸塞州立大学阿默斯特分校。研究方向包括数论,伽罗华表示理论以及有限域上的代数几何。在Journal of Number Theory,Mathematische Zeitschrift, Nagoya Mathematical Journal, Mathematical Research Letters, Mathematics of Computation等杂志发表论文。
编辑:王苗 审核:舒乾宇 终审:屈加文