导入数据...
Stability of periodic waves bifurcating from a front-back wave loop
时间:2025-06-06 10:38:46   来源:数学科学学院   查看:29

报告题目:  Stability of periodic waves bifurcating from a front-back wave loop
报告人:李骥教授
报告时间:2025年6月7日(星期六)17:00-18:00
报告地点:数学科学学院205
摘要:In this talk, we focus on the stability of periodic waves bifurcating from a front-back wave loop. First, in general systems, we give the expressions of spectra with small modulus for linearized operator $L$ about these periodic waves by using Lyapunov-Schmidt reduction method and Lin-Sandstede method. Then, applying above spectral results to FitzHugh-Nagumo system, we obtain that $L^2(\mathbb{R})$-spectrum of $L$, consisting of essential spectrum, lies in the left-hand complex plane and is tangent to the imaginary axis at the origin. Last, we analyse the nonlinear stability of periodic waves against localized perturbations for FitzHugh-Nagumo system.

报告人简介: 李骥,华中科技大学数学与统计学院教授,博士生导师,2008年本科毕业于南开大学数学试点班,2012年在美国杨伯翰大学取得博士学位,后在明尼苏达大学和密西根州立大学做博士后及访问助理教授,2016年加入华中科技大学。主要研究两类问题:1.几何奇异摄动理论及应用,尤其是斑图的存在性,稳定性,以及其分支和相关动力学行为;2.拟线性浅水波多孤立子稳定性问题。在包括Math Ann,Adv,TAMS,JMPA,JFA,AnnPDE,JDE,PhyD等杂志发表论文四十多篇。

编辑:王苗   审核:蒋毅   终审:屈加文