导入数据...
Explicit K-symplectic methods for nonseparable non-canonical Hamiltonian systems
时间:2025-06-06 10:35:02   来源:数学科学学院   查看:23

报告题目:Explicit K-symplectic methods for nonseparable non-canonical Hamiltonian systems 
报  告  人:朱贝贝 副教授 
报告时间:2025年6月6日(周五) 15:30-16:30 
报告地点:数学科学学院205 
报告摘要:We propose efficient numerical methods for nonseparable non-canonical Hamiltonian systems which are explicit, K-symplectic in the extended phase space with long time energy conservation properties. They are based on extending the original phase space to several copies of the phase space and imposing a mechanical restraint on the copies of the phase space. Explicit K-symplectic methods are constructed for two non-canonical Hamiltonian systems. Numerical tests show that the proposed methods exhibit good numerical performance in preserving the phase orbit and the energy of the system over long time, whereas higher order Runge–Kutta methods do not preserve these properties. Numerical tests also show that the K-symplectic methods exhibit better efficiency than that of the same order implicit symplectic, explicit and implicit symplectic methods for the original nonseparable non-canonical systems. On the other hand, the fourth order K-symplectic method is more efficient than the fourth order Yoshida’s method, the optimized partitioned Runge–Kutta and Runge–Kutta–Nyström explicit K-symplectic methods for the extended phase space Hamiltonians, but less efficient than the optimized partitioned Runge–Kutta and Runge–Kutta–Nyström extended phase space symplectic-like methods with the midpoint permutation. 

报告人简介:朱贝贝,北京科技大学副教授,硕士生导师。博士毕业于中国科学院数学与系统科学研究院。多年来一直从事哈密尔顿系统的保结构算法的研究工作。以第一作者或通讯作者身份在计算数学和计算物理领域期刊IMA J. Numer. Anal., J. Comput. Phys., Commun. Comput. Phys.等发表11篇SCI论文。主要研究工作包括非正则哈密尔顿系统的K辛算法的构造及其相关理论分析以及保结构算法在等离子体物理中的应用。2023年入选了第九届中国科协青年人才托举工程项目,2018年获得中国仿真学会“优秀博士学位论文”奖。曾主持国家自然科学基金青年基金项目。

编辑:王苗   审核:蒋毅   终审:屈加文