Implicit-explicit relaxation Runge-Kutta methods: construction, analysis and applications
时间:2022-12-01 09:01:27 来源:数学科学学院 查看:345
报告题目:Implicit-explicit relaxation Runge-Kutta methods: construction, analysis and applications
报 告 人:李东方 教授 (华中科技大学)
报告时间:2022年12月2日 9:00-10:00
报告方式:腾讯会议 718-312-304
报告摘要:Spatial discretizations of time-dependent partial differential equations usually result in a large system of semi-linear and stiff ordinary differential equations. Taking the structures into account, we develop a family of linearly implicit and high order accurate schemes for the time discretization, using the idea of implicit-explicit Runge-Kutta methods and the relaxation techniques. The proposed schemes are monotonicity-preserving/conservative for the original problems, while the previous linearized methods are usually not. We also discuss the linear stability and strong stability preserving (SSP) property of the new relaxation methods. Numerical experiments on several typical models are presented to confirm the effectiveness of the proposed methods.
专家简介:李东方,华中科技大学数学与统计学院教授,博导,中国系统仿真学会仿真算法专业委员会委员。曾先后赴加拿大McGill大学,香港城市大学从事博士后研究。主要从事微分方程数值解、系统仿真和信号处理等领域的研究。在微分方程保结构算法和分数阶微分方程的高效数值算法和理论上取得一些有意义的进展。在SIAM系列杂志、《Math. Comput》、《J. Comp. Phys.》、《J. Sci. Comput.》等杂志上发表多篇SCI论文,多篇为高被引论文。主持国家自然科学基金、科技部项目等4项。入选科睿唯安2022年度全球“高被引科学家”名单。
编辑:数学科学学院